首頁  /  發現  /  思想  /  正文

長株潭城市群居民步行鍛煉去哪兒?

景觀設計學 2023-09-20 來源:景觀中國網
原創
研究發現,長株潭城市群居民的步行體力活動軌跡主要分布在綠色基礎設施的連接廊道和小型場地中
注:本文為刪減版,不可直接引用。原中英文全文刊發于《景觀設計學》(Landscape Architecture Frontiers)2023年第1期“城市森林與全球氣候變暖”。獲取全文免費下載鏈接請點擊https://journal.hep.com.cn/laf/EN/10.15302/J-LAF-1-020075;參考引用格式見文末。


導 讀

本文以中國長株潭城市群綠色基礎設施與居民步行體力活動的頻率和強度為研究對象,分析步行體力活動的空間分布特征,并運用多元線性回歸模型分析城市群綠色基礎設施對居民步行體力活動頻率和強度的影響機制。研究發現,長株潭城市群居民的步行體力活動軌跡主要分布在綠色基礎設施的連接廊道和小型場地中。綠色基礎設施的內部環境、外部環境與空間格局均對居民步行體力活動存在不同程度的影響。最后,本文提出城市群綠色基礎設施的建設及更新策略,以期改善居民步行體力活動環境,充分發揮城市群綠色基礎設施的生態和社會價值。


關鍵詞

綠色基礎設施;步行體力活動;影響機制;長株潭城市群;空間格局



中國長株潭城市群綠色基礎設施對步行體力活動的影響機制研究

Research of the Influence Mechanisms of Green Infrastructure on Walking Physical Activities in Changsha–Zhuzhou–Xiangtan Urban Agglomeration, China


作 者

李博,歐陽浩,劉秋宏

中南大學建筑與藝術學院


01 引言

步行體力活動是降低慢性疾病發生率、改善居民健康和提高生活質量的重要途經之一。綠色基礎設施(green infrastructure,以下簡稱GI)是一種由自然區域和其他開放空間組成的相互連接的網絡及其附帶的工程設施。GI的構成要素為網絡中心、連接廊道和小型場地,是可供步行體力活動的主要場所。現有對GI體系的系統性研究較少探討其對步行體力活動的影響。相關研究還需探索GI整體格局與步行體力活動的相關性,以及進一步綜合分析GI對運動頻率和強度的影響差異和影響機制。

城市群GI將是保障大部分城鄉居民進行步行體力活動的基本設施。為了進一步理解城市群GI和步行體力活動之間的關系,本文對中國長株潭城市群GI和居民步行體力活動展開研究。通過構建多元線性回歸模型進行差異分析,探索城市群GI對步行體力活動頻率和強度的影響機制,并制定有利于促進居民步行運動和健康城市環境建設的策略,以期提升城市居民福祉。

在城市公園中進行步行體力活動的人們 ? 歐陽浩


02 研究方法

研究方法

本文研究區域為湖南省長株潭城市群(長沙市、株洲市、湘潭市)的中心城區,包括長沙市的天心區、芙蓉區、開福區、雨花區和岳麓區;株洲市的天元區、蘆淞區、石峰區和荷塘區;以及湘潭市的岳塘區和雨湖區。

數據來源

研究所用的步行體力活動數據來源于“多銳運動”APP上記錄的2016~2019年的運動數據在數據采集期間,研究區域的用戶量為3785人。采集到的步行軌跡數據的內容包含空間位置、運動類型、運動時長、運動距離、運動日期和運動頻率等信息。

本研究中的城市用地分類數據采用長株潭相關城市總體規劃數據。路網數據基于由“開放街道地圖”獲取到的數據進行分類處理。2016~2020年日平均降水和日平均氣溫數據來源于國家氣象信息中心。歸一化植被指數(NDVI)數據來源于USGS網站2019年12月Landsat 8數據。房價數據通過獲取安居客、鏈家和房天下三個房地產平臺2016~2019年的月度數據,并進行去重處理后計算平均值得出。人口數據來源于第七次全國人口普查統計數據。最終,通過高德地圖爬取2019年12月的各類POI數據,并進行糾偏與清洗。

分析方法

城市群GI的劃定

已被廣泛認可和應用的GI范圍的劃定方法一般包括確定GI的目標和定位,確定其構成要素(即網絡中心、連接廊道和小型場地),以及識別網絡格局三個步驟。

網絡中心是指較少受到外界干擾、面積較大的自然棲息地斑塊,包括處于原生狀態的土地、生態保護區、郊野公園、森林、湖泊、濕地、農田、牧場和林地等。連接廊道是指線性的、連接網絡中心和小型場地的生態廊道,主要包括河流和城市道路周邊,以及防護綠帶等帶狀綠地。小型場地是對網絡中心和連接廊道的補充,為人們提供兼具生態和社會價值的休閑場地,主要包括小型城市公園、廣場、街旁綠地、社區公園等。

網格單元劃分

本文中格網尺度的選擇主要依據人均步行10分鐘的運動距離(800m)來判定。通過ArcGIS 10.6對研究區構建800m×800m的格網體系,并篩選出1436個包含城市群GI的網格單元作為研究樣本區域。

圖片

研究區居民步行體力活動軌跡與網格單元分布圖 ? 李博,歐陽浩,劉秋宏

指標體系構建

本文參考相關研究成果結合研究區現狀,從GI的外部環境、內部環境和景觀格局三個層面構建GI指標體系,得到分析模型的自變量。

外部環境指標包括人口指標,即人口密度、居住密度;經濟指標,即房價水平、土地利用混合度;環境指標,即日平均氣溫、日平均降水。內部環境指標指GI內部的基礎服務設施,即公共廁所、停車場地、城市廣場和公交站點密度;以及景觀要素,包括運動路徑(步道交叉口數量、步道密度),水體(水體面積占比、距水體距離)和綠地(NDVI、綠地面積占比)指標。空間格局指標包括景觀數量,即斑塊密度(PD)、最大斑塊面積占比(LPI);景觀形狀,即景觀形狀指數(LSI)、斑塊邊緣密度(ED);景觀斑塊間關系,即斑塊聚合度指數(AI)、斑塊分離指數(DIVISION)、斑塊蔓延度指數(CONTAG)。步行體力活動指標體系主要包括步行體力活動的頻率和強度,是分析模型的因變量。

GI指數計算與數據預處理

將各項指標數據轉換為柵格數據(像素精度為30m),通過Fragstats4.0移動窗口命令進行計算,并在ArcGIS軟件中,分別計算每個網格單元內所有像素各個指標的平均值。本研究采用Z-Scores法對計算所得網格單元中的平均值進行標準化處理。

研究運用方差膨脹因子對23項指標進行多重共線性檢驗,剔除具有顯著共線性的4個自變量(斑塊密度、斑塊邊緣密度、斑塊分離度指數和斑塊蔓延度指數),最終得到19項自變量指標進行后續分析。

多元線性回歸模型

本研究利用多元線性回歸模型對19項城市群GI指標進行差異分析,討論GI外部環境、內部環境和空間格局指標與步行體力活動頻率和強度之間的關系。


03 研究結果

步行體力活動空間分析

通過對長株潭城市群GI的功能分析和空間識別,劃定9類GI空間,占城市群總面積的44%。網絡中心主要包括長株潭城市群綠心和大型城市公園。連接廊道的識別主要包括湘江景觀帶、芙蓉大道綠帶,以及城市主、次、支三級道路沿線的其他城市道路綠帶。小型場地主要包括小型城市綠地、城市廣場、社區公園和小型城市公園。

圖片

城市群GI網絡中心及連接廊道分布圖 ? 李博,歐陽浩,劉秋宏

經計算GI內部的軌跡數量與步行體力活動軌跡總數的百分比,結果顯示88.3%的步行活動發生在GI內部,且集中分布在三個城市中心城區的城市綠道、綠地和公園等區域。在空間結構上,連接廊道中有最多的步行軌跡數量和最大的軌跡總長,而網絡中心擁有最少的步行軌跡數量和最短的長度。從具體類型來看,其他城市道路綠帶和其他城市綠地這兩類中的軌跡數量和長度均較大,城市群綠心、大型城市公園的軌跡數量和長度均較小。

圖片

城市群GI小型場地分布圖 ? 李博,歐陽浩,劉秋宏

步行體力活動頻率和強度

通過對1436個網格單元內的指標進行計算(最小值、最大值和平均值),并在SPSS軟件中對標準化后的數據進行回歸分析。多元回歸分析結果顯示多元線性回歸模型擬合效果較好,且自變量之間不存在多重共線性,回歸模型顯著性檢驗成立。

部分城市群GI指標對步行體力活動的頻率或強度均表現出顯著影響(P≤0.05),包括居住密度、房價水平、公共廁所密度、城市廣場密度、公交站點密度、綠地公園占比、最大斑塊面積占比和斑塊聚合度指數,其中公共廁所密度、LPI和步行體力活動的頻率與強度呈負相關關系。而部分城市群GI指標則對步行體力活動的頻率或強度影響均不顯著(P>0.05),包括人口密度、日平均降水、距水體距離、NDVI和LSI。

部分城市群GI指標對步行體力活動的頻率或強度的影響存在差異。在外部環境指標中,LM和日平均氣溫和步行體力活動強度具有顯著正相關關系,而對步行體力活動頻率影響不顯著;在內部環境指標中,步道密度和步行體力活動頻率有顯著正相關關系,而水體面積占比和步行體力活動強度顯著負相關。

整體而言,居住密度、房價水平、步道密度對步行體力活動頻率的影響最顯著(P≤0.01),居住密度、房價水平、LM、日平均氣溫、公共廁所密度、城市廣場密度、公交站點密度、步道交叉口數量、綠地面積占比和AI對步行體力活動強度的影響最顯著(P≤0.01)。


04 討論

步行體力活動主要集中在連接廊道和小型場地中,說明居民更傾向于沿綠道等線性空間或者是在小型城市開放空間中開展步行體力活動。連接廊道可以有效連接各類城市開放空間,適宜的步行尺度使其可以滿足健身鍛煉和休閑游憩的多種需求。小型場地常見于居住地周邊,距離居民通勤路線較近,具備相對完善的基礎設施和趣味靈活的游線,從而易于提高居民的步行活動體驗。

圖片

城市群GI可有效連接各類運動設施 ? 歐陽浩

此外,僅少部分步行體力活動軌跡分布在城市群綠心和大型城市公園中(如岳麓山、石燕湖等)。因自然保護管控政策要求,城市群綠心和大型城市公園較少分布在土地開發強度較大的高密度城市中心區域,而更多分布在市郊、鄉村等區域,對于居住在城市中的居民來說,路程中花費的時間較長且游憩設施較少,因而出現在網絡中心的步行體力活動較少。

從外部環境指標來看,回歸分析結果顯示城市群GI中居住密度和房價水平與步行體力活動的頻率和強度呈正相關關系。居住密度較高的區域可能人口數量更多,總體出行需求更高,同時,這類區域具有更高的街道連通性、可達性,更易于為居民帶來良好的步行運動體驗。其次,LM與步行體力活動的強度呈現正相關關系,LM越高的區域往往在步行范圍內分布有多種設施,以便于居民在一次步行活動過程中完成多項任務;日平均氣溫對居民步行體力活動的強度具有顯著正向影響,本研究中步行軌跡數據主要集中在春季和秋季,較高的溫度可以提高人體感知舒適度,減少疲憊感。

圖片

圖片

城市群GI可以為人們提供多樣的活動場所 ? 歐陽浩

從內部環境指標中來看,長株潭城市群GI中城市廣場和公交站點密度與步行體力活動的頻率和強度均呈正相關關系,這表明可以通過適當增加城市廣場和公交站點來提高基礎設施的可達性。而公共廁所密度和步行體力活動的頻率和強度均呈負相關關系。這與以往相關研究存在一定的差異,后續需要進一步細分研究繼續探討公共廁所空間配置與步行體力活動之間的關系。運動路徑方面,步道密度和步行活動頻率呈正相關關系;步道交叉口數量和步行活動強度呈正相關關系,步道交叉口數量和步道密度往往代表了一個地區連通性的強弱,更好的連通性不僅易于行走,還能有效疏解聚集性人群;同時步道交叉口能有效降低道路交通中的機動車車速,提高步行環境的安全性。水體面積占比和步行體力活動的強度呈負相關關系,長株潭城市群GI中的水體主要為面積較大的江河湖泊或水源涵養區,生態保護和水源保護的要求限制了公眾的親水活動,從而在一定程度上限制了步行體力活動。

從景觀格局指標來看,LPI與步行體力活動的頻率和強度呈負相關關系,而AI與步行體力活動的頻率和強度呈正相關關系,說明城市群核心GI斑塊面積越大,相應的居民步行活動的頻率和強度越低;而斑塊間聚合關系越好,越能促進居民步行活動的頻率和強度。長株潭GI大型景觀斑塊主要位于城郊,遠離城市核心區,可達性相對較差,并且因生態保護要求在一定程度上限制步行等人為活動。城市群GI中良好的景觀聚合關系則可以在加強各景觀類型之間的連通性、保障步行運動通暢和步行運動中的可選擇性,從而提高居民進行步行體力活動的意愿。

從城市群GI對頻率和強度的影響差異來看,景觀格局指標對頻率的影響更顯著,而外部環境指標和內部環境指標對強度的影響更顯著。這表明城市群GI的景觀空間結構和內部景觀連接關系會直接影響居民步行體力活動的頻率,原因可能在于頻率代表了居民進行周期性步行體力活動的意向,而連接性更強、聚合度更高的GI斑塊通常具有更有序、更穩定的景觀系統為步行提供有利的城市群環境。強度表示居民進行步行體力活動持續的時間和運動狀態,豐富的土地利用和基礎設施類型,以及適宜的環境溫度和降水能有效滿足居民在長時間、長距離運動中對景觀多樣化的需求,降低高負荷運動的疲憊感,提升高強度活動的體驗感。


05 結論

基于GI相關理論,本研究識別并構建了長株潭城市群GI體系,探討了在長株潭城市群GI中步行體力活動的空間分布和各項GI指標對步行體力活動頻率和強度的影響差異。

依據本文研究結果,研究團隊提出三項城市群GI建設策略。在外部環境方面,打造與公園、步行綠道和其他綠地臨近的多業態、功能型住區環境,可以整體增強居民步行體力活動強度。在內部環境方面,增加GI中城市廣場、公交站點等設施的數量,構建相對集中的人行步道網絡,并適當增加步道交叉口數量,可有效提升居民進行步行體力活動的頻率。在空間格局方面,在保障生態功能的前提下適當控制大型綠地面積,增加可步行的中小型綠地面積和數量,合理規劃連接各類GI的步行綠道系統,可以保證步行運動過程的連續性,進而全面提升步行體力活動的頻率和強度。

受采集到的數據所限,本研究還存在一些不足。首先,多銳APP的主要用戶是青年和中年人,因此本文未能體現城市群GI對未成年人和老年人步行體力活動的影響,未來將進一步采集這兩類人群的步行體力活動數據開展專項研究。其次,本研究僅使用客觀環境要素作為自變量來研究GI與步行體力活動的關系,缺少對居民環境感知、心理感受等主觀因素的探討,后續將進一步拓展這方面的研究。



參考文獻

[1] Liu, J., Chen, Z., Yang, F., He, X., Chen, W., & Deng, S. (2014). Current situation and strategies to chronic diseases of the elderly in China. China & Foreign Medical Treatment, 33(23), 194-195, 198.
[2] World Health Organization. (2014). Global status report on noncommunicable diseases 2014.
[3] Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Reports, 100(2), 126-131.
[4] Wu, Z., Wang, Z., & Song, Y. (2018). The meta analysis on the built environment’s influence on the physical activity of the elderly. Journal of Shanghai University of Sport, 42(1), 64-71, 78.
[5] Chen, C., Hailili, T., & Chen, Y. (2018). Built environment's influence on obesity of the older women and its planning responses. Human Geography, 33(4), 76-81.
[6] Beaulieu, K., Hopkins, M., Blundell, J., & Finlayson, G. (2018). Homeostatic and non-homeostatic appetite control along the spectrum of physical activity levels: An updated perspective. Physiology & Behavior, (192), 23-29.
[7] Edholm, O. G., Adam, J. M., Healy, M. J., Wolff, H.S., Goldsmith, R., & Best, T. W. (1970). Food intake and energy expenditure of army recruits. British Journal of Nutrition, (24), 1091-1107.
[8] Mayer, J., Roy, P., & Mitra, K. P. (1956). Relation between caloric intake, body weight, and physical work: Studies in an industrial male population in West Bengal. The American Journal of Clinical Nutrition, 4(2), 169-175.
[9] Frank, L. D., Sallis, J. F., Conway, T. L., Chapman, J. E., Saelens, B. E., & Bachman, W. (2006). Many pathways from land use to health: Associations between neighborhood walkability and active transportation, body mass index, and air quality. Journal of the American Planning Association, 72(1), 75-87.
[10] Giles-Corti, B., Vernez-Moudon, A., Reis, R., Turrell, G., Dannenberg, A. L., Badland, H., Foster, S., Lowe, M., Sallis, J. F., Stevenson, M., & Owen, N. (2016). City planning and population health: A global challenge. Lancet, (388), 2912-2924.
[11] Tainio, M., Andersen, Z. J., Nieuwenhuijsen, M. J., Hu, L., de Nazelle, A., An, R., Garcia, L. M. T., Goenka, S., Zapata-Diomedi, B., Bull, F., & de Sá, T. H. (2021). Air pollution, physical activity and health: A mapping review of the evidence. Environment International, (147), 105954.
[12] Tyrv?inen, L., Ojala, A., Korpela, K., Lanki, T., Tsunetsugu, Y., & Kagawa, T. (2014). The influence of urban green environments on stress relief measures: A field experiment. Journal of Environmental Psychology, (38), 1-9.
[13] Li, K. (2009). Green infrastructure: Concept, theory and practice. Chinese Landscape Architecture, 25(10), 88-90.
[14] Benedict, M. A., & McMahon, E. (2006). Green Infrastructure: Linking Landscapes and Communities. Island Press.
[15] Zhang, Y., Yu, B., & Che, S. (2014). The comparison and blending of green infrastructure and low impact development. Chinese Landscape Architecture, 30(3), 49-53.
[16] Ding, J., & Wang, M. (2016). The planning of the green infrastructure in the country with water network—A case study of the west area of Lili Town. Chinese Landscape Architecture, 32(1), 98-102.
[17] Zhang, Q. (2009). Exploration on the protection and utilization mode of urban green heart area—Case study of the green heart planning of Changsha–Zhuzhou–Xiangtan urban agglomeration, China. Paper Collection for 2009 International Forum on Urban Development and Planning, 16-18, 45.
[18] Ferreira, J. C., Monteiro, R., & Silva, V. R. (2021). Planning a green infrastructure network from theory to practice: The case study of Setúbal, Portugal. Sustainability, 13(15), 8432.
[19] National Recreation and Park Association. (2016). NRPA Americans’ Engagement with Parks Survey.
[20] Coombes, E,. Jones, A. P., Hillsdon, M. (2010). The relationship of physical activity and overweight to objectively measured green space accessibility and use. Social Science & Medicine, (70), 816-822.
[21] Sallis, J., Bauman, A., & Pratt, M. (1998). Environmental and policy interventions to promote physical activity. American Journal of Preventive Medicine, 15(4), 379-397.
[22] Astell-Burt, T., Feng, X., & Kolt, G. S. (2014). Green space is associated with walking and moderate-to-vigorous physical activity (MVPA) in middle-to-older-aged adults: Findings from 203883 Australians in the 45 and up study. British Journal of Sports Medicine, (48), 404-406.
[23] Owen, N., Humpel, N., Leslie, E., Bauman, A. & Sallis, J. F. (2004). Understanding environmental influences on walking: Review and research agenda. American Journal of Preventive Medicine, 27(1), 1-76.
[24] Coutts, C., Chapin, T., Horner, M., & Taylor, C. (2013). County-level effects of green space access on physical activity. Journal of Physical Activity and Health, (10), 232-240.
[25] Li, F., Fisher, K., Brownson, R., & Bosworth, M. (2005). Multilevel modelling of built environment characteristics related to neighborhood walking activity in older adults. Journal of Epidemiology and Community Health, (59), 558-564.
[26] Akpinar, A., & Cankurt, M. (2017). How are characteristics of urban green space related to levels of physical activity: Examining the links. Indoor and Built Environment, 26(8), 1091-1101.
[27] Schipperijn, J., Cerin, E., Adams, M. A., Reis, R., Smith, G., Cain, K., Christiansen, L. B., van Dyck, D., Gidlow, C., Frank, L. D., Mitá?, J., Pratt, M., Salvo, D., Schofield, G., & Sallis, J. F. (2017). Access to parks and physical activity: An eight country comparison. Urban Forestry & Urban Greening, (27), 253-263.
[28] Fu, X. (2015). Green infrastructure planning and the enlightenment to our country. Urban Development Studies, 22(4), 52-58.
[29] Kim, G., & Miller, P. A. (2019). The impact of green infrastructure on human health and well-being: The example of the Huckleberry Trail and the Heritage Community Park and Natural Area in Blacksburg, Virginia. Sustainable Cities and Society, (48), 101562.
[30] Lu, D. (2015). Function orientation and coordinating development of subregions within the Jing-Jin-Ji urban agglomeration. Progress in Geography, 34(3), 265-270.
[31] Research group of China Development Research Foundation. (2022). Report on the integration of urban agglomerations in China. China Economic Report, (5), 109-119.
[32] Peng, Z., Wu, Y., Wu, T., & Xiao, Y. (2008). Conception and suggestion about frame of green space system in Chang-Zhu-Tan urban cluster region. Journal of Anhui Agricultural Sciences, 36(3), 1043-1045.
[33] Dong, X., Liang, Y., Hou, B., & Chen, L. (2021). Research on greenway route selection method of urban agglomeration based on resource and environment assessment system: Taking Beijing-Tianjin-Hebei urban agglomeration as an example. Urban Development Studies, 28(12), 118-127.
[34] Wang, F., & Wang, K. (2019). Connectivity and distribution pattern of regional greenways and ecological recreation spaces in the Pearl River Delta urban agglomeration. Progress in Geography, 38(3), 428-440.
[35] Jiao, S., Wei, C., Liu, S., He, S., & Guan, C. (2009). The protective development strategies of green heart in the urban agglomeration in Chang-Zhu-Tan urban agglomeration. Economic Geography, 29(10), 1716-1719, 1742.
[36] Li, B., & Gan, T. (2019). Construction of water security pattern of Changsha-Zhuzhou-Xiangtan urban agglomeration based on ArcGIS and GAP analysis. Water Resources Protection, 35(4), 80-88.
[37] Wang, J., Yuan, Y., Zhang, X., & Wang, Z. (2018). Comprehensive evaluation of the urban green space in the Beijing-Tianjin-Hebei urban agglomeration. Urban and Environmental Studies, (1), 55-65.
[38] Ao, Y., Wang, Z., Zhao, Y., Jiang, L., & Zhang, M. (2022). Effect of green space landscape elements on temperature under different urbanization levels: A case study of Guanzhong Plain urban agglomeration. Chinese Journal of Ecology, 1-15.
[39] Yang, F., Duan, N., Xu, Y., & Tao, Y. (2019). Smart planning and cross regional interaction: Dilemma and planning response of regional green space protection. Planners, 35(21), 52-58.
[40] Zhang, Y., Liu, Z., Wang, J., & Shao, D. (2020). Analysis of regional differences in urban park green space per capita of urban agglomerations in China from 1996 to 2016. Huazhong Architecture, 38(5), 65-70.
[41] Andersson, E., Barthel, S., Borgstr?m, S., Colding, J., Elmqvist, T., Folke, C., & Gren, ?. (2014). Reconnecting cities to the biosphere: Stewardship of green infrastructure and urban ecosystem services. AMBIO, 43(4), 445-453.
[42] Chen, Y., Zhou, G., Wang, H., Cui, S., Bi, F., & Yu, X. (2023). The evolution characteristics and enhancement paths of the economy-society-ecology coordinated development level of Changsha-Zhuzhou-Xiangtan urban agglomeration. Tropical Geography, 43(3), 519-531.
[43] Changsha Municipal Bureau of Natural Resources and Planning. (2014). Urban Comprehensive Planning of Changsha (2003–2020) (Revised in 2014).
[44] Xiangtan Municipal Bureau of Natural Resources and Planning. (2017). Urban Comprehensive Planning of Xiangtan (2010–2020) (Revised in 2017).
[45] Zhuzhou Municipal Bureau of Natural Resources and Planning. (2017). Urban Comprehensive Planning of Zhuzhou (2006–2020) (Revised in 2017).
[46] Li, W., & Li, J. (2017). Identification and optimization of small and medium-sized green infrastructure based on GIS: A case study of Nanxi Wetland Ecological Tourist Area in Xuancheng, Anhui Province. Journal of Hefei University of Technology (Social Sciences), 31(3), 128-134.
[47] Cai, Y., Wen, Z., & Lei, M. (2016). Green infrastructure system planning strategy for “sponge city” development. Planners, 32(12), 12-18.
[48] Fu, X., & Wu, R. (2009). Introduction to green infrastructure assessment (GIA)—A case study of Maryland, USA. Chinese Landscape Architecture, 25(9), 41-45.
[49] Yang, J., Qi, Z., & Peng, S. (2022). Construction of multi-level green infrastructure network in Changsha City. Journal of Chinese Urban Forestry, 20(2), 36-42.
[50] Wu, W., & Fu, X. (2009). The concept of green infrastructure and review of its research development. Urban Planning International, 24(5), 67-71.
[51] Gong, C., Wu, H., & Hu, C. (2022). Ecological function optimization strategy of urban public open space based on green infrastructure network: A case study of central Nanjing. New Architecture, (1), 49-54.
[52] Wickham, J. D., Riitters, K. H., Wade, T. G., & Vogt, P. (2010). A national assessment of green infrastructure and change for the conterminous United States using morphological image processing. Landscape and Urban Planning, 94(3-4), 186-195.
[53] Ai, J., Yu, K., Zeng, Z., Yang, L., Liu, Y., & Liu, J. (2022). Assessing the dynamic landscape ecological risk and its driving forces in an island city based on optimal spatial scales: Haitan Island, China. Ecological Indicators, (137), 108771.
[54] Jin, Y., Li, A., Bian, J., Nan, X., Lei, G., & Muhammad, K. (2021). Spatiotemporal analysis of ecological vulnerability along Bangladesh-China-India-Myanmar economic corridor through a grid level prototype model. Ecological Indicators, (120), 106933.
[55] García-Llamas, P., Calvo, L., De la Cruz, M., & Suárez-Seoane, S. (2018). Landscape heterogeneity as a surrogate of biodiversity in mountain systems: What is the most appropriate spatial analytical unit? Ecological Indicators, (85), 285-294.
[56] Yang, L., Yu, B., Liang, P., Tang, X., & Li, J. (2022). Crowdsourced data for physical activity-built environment research: Applying Strava data in Chengdu, China. Frontiers in Public Health, (10), 883177.
[57] Liu, Y., Hu, J., Wang, W., & Luo, C. (2022). Effects of urban park environment on recreational jogging activity based on trajectory data: A case of Chongqing, China. Urban Forestry & Urban Greening, (67), 127443.
[58] Zhong, Q., Li, B., & Chen, Y. (2022). How do different urban footpath environments affect the jogging preferences of residents of different genders? Empirical research based on trajectory data. International Journal of Environmental Research and Public Health, (19), 14372.
[59] Chen, W., Xiao, D., & Li, X. (2002). Classification, application, and creation of landscape indices. Chinese Journal of Applied Ecology, 13(1), 121-125.
[60] Moore, S., & Kestens, Y. (2011). Neighbourhood environmental correlates of perceived park proximity in Montreal. Canadian Journal of Public Health, 102(3), 176-179.
[61] Arifwidodo, S. D., Chandrasiri, O., Rasri, N., Sirawarong, W., Rattanawichit, P., & Sangyuan, N. (2022). Association between park visitation and physical activity among adults in Bangkok, Thailand. Sustainability, 14(19), 12938.
[62] Wang, Z., Ettema, D., & Helbich, M. (2021). Objective environmental exposures correlate differently with recreational and transportation walking: A cross-sectional national study in the Netherlands. Environmental Research, (194), 110591.
[63] Wang, H., Dai, X., Wu, J., Wu, X., & Nie, X. (2019). Influence of urban green open space on residents’ physical activity in China. BMC Public Health, (19), 1093.
[64] Li, X., Hong, Z., Yuan, Y., Zhao, L., & Xu, M. (2015). Research on residence outdoor space suitable for elders and children’s activities. Urban Development Studies, 22(5), 104-111.
[65] Acar, H., Yavuz, A., Ero?lu, E., Acar, C., Sancar, C., & De?ermenci, A. S. (2021). Analysis of activity, space and user relations in urban squares. Indoor and Built Environment, 30(9), 1466-1485.
[66] Qin, B., & Zhang, Y. (2019). The effects of urban built environment on residents’ physical activity: A study on neighborhood survey in Beijing. Urban Development Studies, 26(3), 65-71.
[67] Wang, H., & Yang, Y. (2019). Neighbourhood walkability: A review and bibliometric analysis. Cities, (93). 43-61.
[68] Xue, H., Cheng, X., Jia, P., & Wang, Y. (2020). Road network intersection density and childhood obesity risk in the US: A national longitudinal study. Public Health, (178), 31-37.
[69] Cai, Z., Fang, C., Zhao, H., Zhang, X., & Zhang, Q. (2022). A review and future research framework on association between blue space and physical activity. Journal of Environmental and Occupational Medicine, 39(10), 1165-1171.
[70] Aliyas, Z. (2020). A qualitative study of park-based physical activity among adults. Journal of Public Health, (28), 623-632.
[71] Poppe, L., Deforche, B., Van Cauwenberg, J., Brondeel, R., Mertens, L., Van de Weghe, N., Benoit, S., Veitch, J., & Van Dyck, D. (2022). The association between the number of parks near home and levels of physical activity among community-dwelling older adults: A longitudinal study. Cities, (130), 103931.
[72] Ma, L., Bo, J., Li, X., Fang, F., & Cheng, W. (2019). Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example. Science of the Total Environment, (674), 424-438.
[73] Zhao, F., Li, H., Li, C., Cai, Y., Wang, X., & Liu, Q. (2019). Analyzing the influence of landscape pattern change on ecological water requirements in an arid/semiarid region of China. Journal of Hydrology, (578), 124098.
[74] Kim, M., Song, K., & Chon, J. (2021). Key coastal landscape patterns for reducing flood vulnerability. Science of the Total Environment, (759), 143454.
[75] Li, B., Liu, Q., Wang, T., He, H., Peng, Y., & Feng, T. (2022). Analysis of urban built environment impacts on outdoor physical activities—A case study in China. Frontiers in Public Health, (10), 861456.
[76] Xu, Z., Kong, X., & Wei, J. (2014). Clustering analysis on disciplines innovation capabilities of research-oriented universities in China—An example of 36 “Project 985” universities. Science and Technology Progress and Policy, 31(23), 165-168.
[77] Qian, Y., & Fang, X. (2022). Multiple linear regression model and application. China Science and Technology Information, (4), 73-74.
[78] Liu, K., Siu, K. W. M., Gong, X., Gao, Y., & Lu, D. (2016). Where do networks really work? The effects of the Shenzhen greenway network on supporting physical activities. Landscape and Urban Planning, (152), 49-58.
[79] He, D., Lu, Y., Xie, B., & Helbich, M. (2021). Large-scale greenway intervention promotes walking behaviors: A natural experiment in China. Transportation Research Part D: Transport and Environment, (101), 103095.
[80] Li, Y., Wang, J., & Wang, Z. (2011). Discussions on North American experiences about linear open space planning and management. Urban Planning International, 26(4), 85-90.
[81] Seong, E. Y., Lee, N. H., & Choi, C. G. (2021). Relationship between land use mix and walking choice in high-density cities: A review of walking in Seoul, South Korea. Sustainability, (13), 810.
[82] Huang, R., Moudon, A. V., Zhou, C., & Saelens, B. E. (2019). Higher residential and employment densities are associated with more objectively measured walking in the home neighborhood. Journal of Transport & Health, (12), 142-151.
[83] Sung, H., Lee, S., & Cheon, S. Operationalizing Jane Jacobs’s urban design theory: Empirical verification from the Great City of Seoul, Korea. Journal of Planning Education and Research, 35(2), 117-130.
[84] Obuchi, S. P., Kawai, H., Garbalosa, J. C., Nishida, K., & Murakawa, K. (2021). Walking is regulated by environmental temperature. Scientific Reports, 11(1), 12136.
[85] Ma, Q., Wang, L., Gong, X., & Li, K. (2022). Research on the rationality of public toilets spatial layout based on the POI data from the perspective of urban functional area. Journal of Geo-information Science, 24(1), 50-62.
[86] Zang, P., Qiu, H., Xian, F., Zhou, X., Ma, S., & Zhao, Y. (2021). Research on the difference between recreational walking and transport walking among the elderly in mega cities with different density zones: The case of Guangzhou City. Frontiers in Public Health, (9), 775103.
[87] Smith, K. R., Brown, B., Yamada, I., Kowaleski-Jones, L., Zick, C. D., & Fan, J. X. (2008). Walkability and body mass index density, design, and new diversity measures. American Journal of Preventive Medicine, 35(3), 237-244.
[88] Wang, F., Wen, M., & Xu, Y. (2013). Population-adjusted street connectivity, urbanicity and risk of obesity in the U.S. Applied Geography, (41), 1-14.
[89] Jansen, M., Kamphuis, C. B., Pierik, F. H., Ettema, D. F., & Dijst, M. J. (2018). Neighborhood-based PA and its environmental correlates: A GIS- and GPS based cross-sectional study in the Netherlands. BMC Public Health, (18), 233.
[90] Perchoux, C., Kestens, Y., Brondeel, R., & Chaix, B. (2015). Accounting for the daily locations visited in the study of the built environment correlates of recreational walking (the record cohort study). Preventive Medicine, (81), 142-149.
[91] Van Cauwenberg, J., Nathan, A., Barnett, A., Barnett, D. W., & Cerin, E. (2018). Relationships between neighbourhood physical environmental attributes and older adults’ leisure-time physical jogging: A systematic review and meta-analysis. Sports Medicine, (48), 1635-1660.
[92]  Spring, A. (2018). Short- and long-term impacts of neighborhood built environment on self-rated health of older adults. Gerontologist, 58(1), 36-46.


本文引用格式 / PLEASE CITE THIS ARTICLE AS

Li, B., Ouyang, H., & Liu, Q. (2023). Research of the influence mechanisms of green infrastructure on walking physical activities in Changsha–Zhuzhou–Xiangtan Urban Agglomeration, China. Landscape Architecture Frontiers, 11(1), 30–57. https://doi.org/10.15302/J-LAF-1-020075



編輯 | 高雨婷,田樂,王穎
翻譯 | 王越,高雨婷,田樂



版權聲明:本文版權歸原作者所有,請勿以景觀中國編輯版本轉載。如有侵犯您的權益請及時聯系,我們將第一時間刪除。

投稿郵箱:info@landscape.cn

項目咨詢:18510568018(微信同號)

打賞
  • 給Ta打個賞

0

發表評論

您好,登錄后才可以評論哦!

熱門評論

相關文章

主站蜘蛛池模板: 国产欧美精品一区二区| 黄页视频在线观看免费| 男人j桶进女人免费视频| 巨胸动漫美女被爆羞羞视频| 吃奶摸下的激烈免费视频播放| 久久久久久久性| 2019av在线视频| 白嫩少妇激情无码| 女人张开腿让男人桶个爽| 免费在线观看a| aa级国产女人毛片水真多| 玉蒲团之天下第一| 国内色综合精品视频在线| 农民人伦一区二区三区| 一区二区三区四区在线视频| 青青青国产在线视频| 日本一区高清视频| 啊昂…啊昂高h| www.成年人| 精品无码国产一区二区三区av| 日本视频免费高清一本18| 国产乱子伦农村叉叉叉| 中文字幕在线视频在线看| 精品国产一区二区三区av片| 天天躁日日躁狠狠躁av麻豆| 亚洲精品人成无码中文毛片| 曰批全过程免费视频播放网站| 最近中文字幕在线中文视频| 国产免费一区二区三区在线观看| 亚洲av无码不卡一区二区三区| 黄页网址大全免费观看22| 打臀缝打肿扒开夹姜| 免费网站看v片在线18禁无码| 一级毛片**免费看试看20分钟 | 国产精品成人无码免费| 国产丝袜视频一区二区三区| 两个人看的www在线| 老师好大好爽办公室视频| 婷婷社区五月天| 亚洲日本在线免费观看| 黑人26厘米大战亚洲女|